

Introduction to Solar Resource Assessments

Carsten Hoyer-Klick

German Aerospace Center

Institute of Technical Thermodynamics

Folie 1

Transfer of Solar Radiation through the Atmosphere

für Luft- und Raumfahrt e.V.

in der Helmholtz-Gemeinschaft

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

Folie 2

SULF

Diffuse Horizontal Radiation

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Folie 4

and Nuclear Safety

Global Horizontal Irradiation (GHI)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Environment, Nature Conservation and Nuclear Safety

- The Meteosat satellite is located in a geostationary orbit
- The satellite scans the earth line by line every half hour

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Das Meteosat System – Image recording SOLARMED

Scan

- The satellite rotates at 100 rpm
- Line by line scanning of the earth from south to north
- Pixels by sampling of the analog sensor signal
- Field of view of the sensor e.g. in Europe 3 x 4 km due to geometric distortion

The Meteosat satellite is located in a geostationary orbit

SÓI ARMFN 🖉

- The satellite scans the earth line by line every half hour
- → The earth is scanned in the visible …

on a decision of the Parliament

 The Meteosat satellite is located in a geostationary orbit

SÓLARMED #

- The satellite scans the earth line by line every half hour
- The earth is scanned in the visible and infra red spectrum

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

and Nuclear Safety

SOLARMED

- The Meteosat satellite is located in a geostationary orbit
- The satellite scans the earth line by line every half hour
- The earth is scanned in the visible and infra red spectrum
- A cloud index is composed from the two channels

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Clear sky Model input data

Aerosol optical thickness
 GACP Resolution 4°x5°, monthly climatology
 MATCH Resolution 1.9°x1.9°, daily climatology

✓ Water Vapor: NCAR/NCEP Reanalysis Resolution 1.125°x1.125°, daily values

Ozone: TOMS sensor
 Resolution 1.25°x1.25°, monthly values

Remote Sensing of Aerosols

- → Usually split channel / dark target approach:
 - → A dark target is searched in a long-wave channel
 - The reflectivity is observed in a short wave channel (usually aerosol backscatter increases with frequency)
 - → The difference is translated into a AOD
- → Problems:
 - Dark targets a land: Forrests, lakes only a very few available almost none in deserts

Chemistry Transport Models for Aerosol Data

Modeling of aerosol uptake, transport, chemical change and deposition in a numerical model

- → Input:
 - → Surface properties
 - → Emission data bases
 - \neg Numerical weather models (especially wind fields, rain).
- → Modeling:
 - → Aerosol uptake
 - \rightarrow Aerosol transport with wind
 - → Aerosol outfall
 - \rightarrow Aerosol chemistry, change in properties with time
- → Output:
 - Mass concentrations
 - → converted to optical properties

Chemistry Transport Models – Emission data bases

Emission data
 bases, e.g.
 SOx emissions

₽.

Chemistry Transport Models - Dust

- Mineral dust mobilisation is initiated by strong winds blowing over bare ground and erodible particles.
- Medium range sand-sized particles above 60 µm particle diameter are lifted up, but also fall quickly down again to the ground.
- ✓ The momentum of the landing particles results in the loosening of small and fast moving particles which are known as sandblasting particles.
- Dust particles are mixed into higher atmospheric layers by turbulent processes and transported in the atmospheric flow over larger distances.

Uncertainty in Aerosols

GADS

NASA GISS v1 / GACP

Toms

NASA GISS v2 1990

- → All graphs are for July
- → Scales are the same! (0 1.5)
- Large differences in Aerosol values and distribution

Linke Turbidity

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

AeroCom

MATCH

Folie 16

Calculation of solar radiation from remote sensing

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

and Nuclear Safety

Cloud Transmission for DNI

Sun-satellite angle 60-80

Simple function $\tau = e^{-10^* ci}$

Complex functions: Different exp. function for various viewing angles and brightness temperatures

Comparing ground and satellite data: time scales

Hi-res satellite pixel in Europe

- Hourly average Meteosat image Measurement
- Ground measurements are typically pin point measurements which are temporally integrated
- Satellite measurements are instantaneous spatial averages
- Hourly values are calculated from temporal and spatial averaging (cloud movement)

Federal Ministry for the Environment, Nature Conser and Nuclear Safety

Comparing ground and satellite data: "sensor size" ED

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Environment, Nature Conservati and Nuclear Safety

Satellite data and nearest neighbour stations

SOLARMED

 Satellite derived data fit better to a selected site than ground measurements from a site farther than 25 km away.

Inter annual variability

Strong inter annual and regional variations

Average of the direct normal irradiance from 1999-2003

٩.

Long-term variability of solar irradiance

→ 7 to 10 years of measurement to get long-term mean within 5%
Global Radiation Potsdam 1937-2000

Ground measurements vs. satellite derived data

Ground measurements

Advantages

- + high accuracy (depending on sensors)
- + high time resolution

Satellite data

Advantages

- + spatial resolution
- + long-term data (more than 20 years)
- + effectively no failures
- + no soiling
 - + no ground site necessary
 - + low costs

Disadvantages

- high costs for installation and O&M
- soiling of the sensors
- sometimes sensor failure
- no possibility to gain data of the past

Disadvantages

- lower time resolution
- low accuracy at high time resolution

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Federal Ministry to Environment, Natur and Nuclear Safety

Folie 27

Combining Ground and Satellite Assessments

- → Satellite data
 - → Long term average
 - ✓ Year to year variability
 - → Regional assessment
- → Ground data
 - → Site specific
 - High temporal resolution possible (up to 1 min to model transient effects)
 - → Good distribution function

Matching Ground and Satellite Data

Why do ground and satellite data not match?

Due to uncertainties in:

- → Atmospheric Parameters, most prominent Aerosols
- → Cloud transmission:
 - The cloud index is a combination of cloud fraction and transparency. A semi transparent cloud can be distinguished well from a fractional cloud cover.
 - Parameterization may depend on prevailing cloud types in the region.

Folie 29

Benchmarking of Time Series Products 50LA

First order measures:
 Bias, root mean square error, standard deviation

Exact match of data pairs in time

Sometime this match is not necessary (e.g. system layout with historical data)

Second order measures:
 Based on Kolmogrov-Smirnov Test

Match of distribution functions

Deutsches Zentrum für Luft- und Raumfahrt e.V.

in der Helmholtz-Gemeinschaft

0.8 0.7 0.6 0.5

0.3

Validation of the MFG data base

based on a decision of the Parl

Using Solar Resource Data for Policy Analysis

Folie 33

ased on a decision of the Parliam f the Federal Republic of German

Policy questions

- → How potential is there for a certain technology?
- \rightarrow Are there prime areas to develop a technology?

and muchan Safety

ed on a decision of the Parliame he Federal Republic of Germany

1st Question: How much Potential?

- \neg Is the technology feasible, are there enough resources?
- \neg Is there sufficient area to depoly the technology?
- → To which share of the (national) demand can they contribute?

Assessing Potentials - Outline

SÓI ARMFN 🖉

ed on a decision of the Parliament

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft Folie 37

SOLARMED

and Nuclear Safety

sed on a decision of the Parliamen

+ Industry, settlements

<1800

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

<1800 1950 + Industry, settlements 2250 + Hydrology

3000+

SOLARMED

1800
 1875
 1950
 2025
 settleme
 settleme

2100 2175 2250

settlements

SOLARMED

- + Hydrology
- + Geomorphology

SOLARMED

<1800 1875 1950 + Industry,

2025

2100 2175 2250

2325 2400 2475

- settlements
- + Hydrology
- + Geomorphology
- + Protected Areas

ased on a decision of the Parliame

- <1800 1875 1950 + Industry,
 - settlements

SOLARMED

- + Hydrology
- + Geomorphology
- + Protected Areas 2550
 - + Wood

2625 2700

2850 2925 3000+

SOLARMED

- + Industry,
 - settlements
- $+ \ Hydrology$
- + Geomorphology
- + Protected Areas
- $+ \ \text{Wood}$

+ Agriculture

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Folie 44

SOLARMED

- + Industry,
 - settlements
- $+ \ Hydrology$
- + Geomorphology
- + Protected Areas
- + Wood
- + Agriculture
- + Slope

SOLARMED

- + Industry,
 - settlements
- $+ \ Hydrology$
- + Geomorphology
- + Protected Areas
- + Wood

- + Agriculture
- + Power lines

- + Industry,
 - settlements
- $+ \ Hydrology$
- + Geomorphology
- + Protected Areas
- + Wood
- + Agriculture
- + Power lines
- + Gas pipelines

Folie 47

SOLARMED

- + Industry,
 - settlements
- $+ \ Hydrology$
- + Geomorphology
- + Protected Areas
- + Wood
- + Agriculture
- + Power lines
- + Gas pipelines
- + Oil pipelines

Solar Radiation at Usable Areas

SOLARMED

CSP Potential

SOLARMED

Costal Potential (<20m a.s.l.) e.g. for sea water desalination

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Folie 51

ed on a decision of the Parliament

Coastal Potential in Egypt

Folie 52

10

Rooftop Potential

DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Folie 53

2nd Question: Which areas the most interesting?

- \rightarrow Where are resources available?
- \neg Are they close enough to the demand centers and infrastructure?
- Which resource are available close to demand centers and intfrastructure?
- Can I optimize my spatial planning according to the resource distribution?

Folie 54

New Approach for Site Ranking

- → Prerequisite: GIS data for resources and infrastructure
- \neg Idea, giving Points to:
 - → Level of available resource
 - → Distance to the electricity grid
 - → Distance to settlements
 - → Distance to infrastructure
- \neg Ranking based on the sum of points.

Determination of weights - DNI

Folie 56

sed on a decision of the Parliament

Determination of weights – Population and Infrastructure

Site Ranking for CSP Tunisia

max

Points

min

Value

Max

Min

Folie 58

Thank you for your attention!

Questions & Answers

Either now or carsten.hoyer-klick@dlr.de

Folie 59

1